Cornell Notes

Topic/Objective: Factoring

Trinomials of the form

\[ax^2 + bx + c \]

Essential Question: How do I use the diamond method to factor a trinomial of the form \(ax^2 + bx + c \), when \(a = 1 \)?

Questions:

What is the difference between a coefficient and a constant?

Notes:

\[ax^2 + bx + c \]

- \(a \) = coefficient in front of \(x^2 \)
- \(b \) = coefficient in front of \(x \)
- \(c \) = constant (not attached to variable)

Diamond method

Multiply to get \(ac \), where \(a = 1 \)

\[\frac{ac}{b} \]

We must find two numbers that multiply to get the top and add to get the bottom.

Summary:
Ex: 1 \[x^2 - 4x - 32 \]
\[a = 1 \]
\[b = -4 \]
\[c = -32 \]

Factors -32
\[32 \times -1 \]
\[-32 \times 1 \]
\[8 \times -4 \]
\[-8 \times 4 \]
\[16 \times -2 \]
\[-16 \times 2 \]

2 numbers that multiply to -32
\[x - 8 \times x + 4 \]
\[-4 \]

Same two numbers \(\pm 1\) to add to -4.
\[(x - 8)(x + 4) \]

Ex 2: \[x^2 + 8x + 12 \]
\[a = 1 \]
\[b = 8 \]
\[c = 12 \]

Factors of 12
\[1 \times 12 \]
\[2 \times 6 \]
\[3 \times 4 \]

\[12 \]
\[x + 2 \times x + 6 \]
\[8 \]

\[(x + 2)(x + 6) \]